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ABSTRACT

In this paper a hybrid Remes-differential correction algorithm for computing
best uniform ratlonal approximants on a compact subset of the real line is
developed. This algorithm differs from the classical multiple exchange Remes

algorithm in two crucial aspects. First of ali, the solving of a nonlinear

.system to find a best approximation on a given rcference set in each iteration
of the Remes algorithm is replaced with the differential correction algoritinm
to compute the desired best approximation on the reference set, Secondly,
the exchange procedure itself has been modified te eliminate the possibility
2 of cycling that can occur in the usual exchange procedure. This second
- modification is necessary to guarantee the convergence of this algorithm on

a finite set without the usual normal and sufficiently dense assumptions

that exist in other studies.
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1. Introduction
This paper is divided into two parts. In the first part we consider X a

compact subset of the real line with card(X) > n + 2. Let C(X) denote the

class of all continuous real valued functions defined on X, normed with the
uniform norm, i.e., |[f[| = max{|[f(x)| : x € X}. Let n be a positive integer

and set
Rg(X) ={r=1/p: pE s p(x) > 0 for all x € X}

where Hn denotes the set of all algebraic polynomials of degree < n, Note
that Rg(x) consists of only the positive elements of the set usually denoted
by Rg(x). In this setting we will give an algorithm for computing the best
approximation fcr positive £ € C(X) from Rg(X). We believe this algorithm is
the correct analog, for this setting, of the standard multiple exchange Remes
algorithmbéor pelynomials., We observe here that if YC X, Y is compact and
card(Y) > n + 2, then existence of a best approximant tec positive f € C(Y)

o from Rg(Y) is guaranteed by [5].

This algorithm contains some unique features including the incorporaticn

of the differentizl correction algorithm [1], [4] to cbtain a best approximation

| 5 at each stage. This insures that the denominator of the best approximaticn, Pk’
on the kth reference set, Xk, will be positive on Xk. If, however, pk(x) .

for some x € X ~ X , we indicate two exchange procedures for selecting the next

K’
reference set. Note that in most studies this possibility is ignored by

assuming (1) £ is normal on some interval [a, b] containing X; (2) X is sufficientl:r
dense in [a, b]; and, (3) Xk is sufficiently close to an alternating set of the

best approximaticn to f on X. We shall also show that using our exchange procedure,

there exists a ko > 0 such that for k > ko, Py must be positive on X. From this

point on, our exchange procedure will coincide2 with the standard multiple exchange

srocedure and we can therefore guarantee convergence without the above assunmptions
& o 4
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Our procedure cculd also be used to overcome the difficulty which Dunham [3]
has pointed out in William's paper on interpolating rationals [7].

It should be further emphasized that a modified exchange procedure iz
actually necessary to guarantee the convergence of this algorithm without
the assumptions (1)-(3) of above. Indeed, if one attempts to use the standard
exchange proceduré without regard to the possibility that P, <0onX -~ Xk may
occur (and hoping that pk(x) =0 forx €X ~ Xk does not occur to give a

divide fault) the usual proof that the error of aprroximation on the successive

reference sets is strictly increasing is false., In fact, examples exist for which

the error does not increase strictly and for which the algorithm actually

eles Uleas B = Pes SRty ™ i By T B P T el B S X, =K,

S e Xk+l = xk+3 = Xk+5 = ...; starting at some k), Using either of the

exchange procedures that we give, we are able to prove that the error of
approximaticn or. successive reference sets is strictly increasing,

The second part of the paper is devoted to the description of the Remes-

= Difcor algorithm (the name of our algorithm) for obtaining the best approximation
to f € C(X), X a finite subset of the real line of at least n + m + 2 points,

by elements of RE(X), m >0, n >0, where

R:(X) = {r =p/q :p€ My a4 €T, q(x) > ¢ for all x € X},

&

2 and the ¢ is chosen so that a best approximatiocn from Rg(x) will also be a best
‘§; approximation from the larger class that relaxes this requirement to q(x) > 0 on

g; X. A proof of the convergence of this algorithm is given, along with a flow

;f chart. Finally, a brief discussion of some numerical results will be given, A
‘ § complete discussion of the numerical results and comparison with both the Remes

algorithm and the differential correction algorithm is planned for in a separate

paper.
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2. Approximating with Rn(x).

Let f € C(X) ~ Rg(x), with £ > 0 on X. We first consider the case where
X is a finite subset of the real line, with card (X) > n + 2. For each k,
S s Xk C X shall denote a reference set of n + 2 or n + 3 points and
r

k

This best approximation, r o is obtained by using the differential correction

- 0 ] +ha = L - . O ’
= l/pk €.Rn(Xk) will denote the best approximation to f on Kk from Rn(kk).

algorithm applied to the point set Xk. There are three advantages to finding

n via the differential correction algorithm rather than via solving a nonlirear
system of equations: a solution is guaranteed, we are assured that pk > 0 on

Xk, and no extra complications will arise if Xk has n + 3 points. After computing
r%, if Xk has n + 3 points we delete one point of Xk to get a new set Yk of n # 2
points, taking care that f - 1 alternates on Yk.

points, then we set Y, = X . Set e = max{ [f(x) - rk(x)l P xE€ Y}, B

If Xk censists of n + 2

= {x € X: pk(x) > 0} and comnsider the following two exchange procedures

for constructing the next reference set X’+l:

Exchange I: (The positive exchange) If r is not the best approximation to f

. by doing an ordinary Remes

0,n
on Zk from Rn(‘ 5

) is constructed from Y
% xk+l e

multiple exchange on the points of Z .

”

If ry is the best approximation to f c¢n

. from Rg(zk) then the algorithm terminates if 2, = X. If 7 # X then y€ X

satisfying pk(y) = min{pk(x)

x € X} is found and Xk+l is defined to be

Bay® {ylu {Yk}’ Note that in this case we have the p (y) < 0 and Besi

consists of n + 3 distinct points of X.

Exchange II. (The negative exchange) In this exchange procedure, the algorithm
first does a standard Remes multiple exchange on the point set Zk with respect

to f -, and Yk cetting W

' k‘: Zk’ where V. consists of n + 2 points on which

k

f - r alternates in sign, [£Cw) - rk(w)! > e for all w& W_ and

max{ | £(w) - Tk(w)| tweEwW!t = max{ | f(x) - rh(x)l tx€2Y IfW =Y and

Ty Tl DA o SR D xS
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Z, =Y and Z = X then the algorithm terminates as r, is the desired best

k k k k

approximation to f on X. If this does not happen then Xk+l is defined to be
W U {y} if Z, # X where y satisfies pk(y) = min{p,(x) : x € X} < 0 and W if
Zk = X.

Note that this exchange procedure differs from the first one in that

whenever Zk # X an additicnal point were Py takes on its minimum is added to

the reference set. In the first exchange procedure this additional point Is

added only when ry is the best approximation to f on Z, from Rg(zk). Also,
note ‘that whenever Zk = X both of these procedures coincide with the standard
Remes multiple exchange procedure. For both of these exchange procedures the
following theorem holds. (The set XlCZ X is chosen so that it has n + 2 points
and e > 0.)

THEOREM 1. If X is finite and the algorithm described above using either of
the two exchange procedures is applied, then {ek} is strictly increaszing.
Furthermore, the algorithm eventually terminates at a best approximation to £
on X from R:(X).

Proof: Tc show that ep < Opyg for all k one must consider two cases. The

first is when Xk+1 is constructed only from points of Zy. In this case Py end
o ~

P4 are both positive on xk+l and a standard de La Vallee Poussin type of ;
5 2 $ hows i is bes 1d
argument (zero counting) shows that e < €,y sincep 1 best on Xk+l an
I se th = or = I, 1is > result.of
P ? P, - In the case that X ., = W U {y} whecre W, =Y, or W is the resuvlt.o

a standard Remes multiple exchange on the points o with respect to f - vy and

Yk’ and y € X satisfies pk(y) = min{pk(x) : x € X} £ 0, there are two subcases to

’ 1d od ips+ '(; when f - s -
be considered. The first is when |£(y) Pk+l(y)| < e ,, so that f sl
alternates on wk with error W Since P is also positive on Wk and
f - > 5 re tl > min{|£ - Z [ i zew?l>
I pkl > e on Wk we must have that e 4y > M (z) Pk( )i hk ze

B e e s s
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by the same de La Vallee Poussin type of argument. Finally, if [£(y) - rk(y)[

= e and £ -

ernates g Y 2 s
bt Tl alternates on Yk+l C‘Xk+l where ? W, then we must

k+1

n

have that max{|[f(z) - rk+l(z)| iz e} Also, f - r, alternates in

ek'{'l'

sign on Wk with |£ - rk| > e on Wk. Thus, by zero counting we must once again

have that max{|f(z) - rk+l(z)| G é.Wk} > min{|£f(2) - rkfz)l e Wk} since
im ing tha ‘ . B 2 F > " the

P £ Pl implying that e < &l (For a more careful treatment of the de La

Vallee Poussin type of argument see the proof of Lemma 2 later in the paper.)
The rest of the theorem now follows since X is finite, and no reference set
can occur more than once.

Although, in actual computation one only encounters finite sets, it is of
interest to consider the behavior of this algorithm if X is only required
to be compact. In the remainder of this section we shall only consider Exchange
I (the positive exchange). It can be shown that similar results are true for
Exchange fIl We first note that in this case the set Zk = {xe€ X : pk(x) > 0}
may fail to be compact. If this happens then it may not be possible to carry
out the Remes multiple exchange on Zk with respect to f - T and Y, . Thus, the
algorithm must be modified by choosing some € > 0 and setting Zk = {x€ X:pk(x)ls}.
The elements.of the set Gk = e % & pk(x) <et will be called g-poles (generalized

poles) of p, . The number e should be chosen so that p, has no g-poles on X
: k k

"
Since
3 B | il
E s + |lIf < 2 |l <2 |lf
ka||x = ” Pkllx L llxk = ” llxk = ” |l,
k k
AL MR TR e T s llf”' For such a choice of e,

the algorithm is defined as above with either of the two exchanges, We now

prove that this modified algorithm converges globally and at least linearly.

o 1 ! s Uy
THEOREM 2. For X a compact subset of [a, b], and 0<e<- F?W, and F£& C(X) ~ R CX)
E——— s 2 !II ol
the rational functions Pk senerated by the modified algorithm described above hav




i no g-poles on X for k > some k, and converge uniformly to the best approximation

r* to f on X according to an inequality of the form ”r - P*l' < A8, 0 <9 <1,

j for k 3_k0.

Proof: Since the conclusion follows trivially if the algorithm terminates, we

oo

assume that this is not the case. The method of proof is to show that {ej}

)
K=]

is increasing and to actually estimate this rate of increase, To prove that

e < ek+1 holds for all k, one simply uses the arguments of Theorem 1, Alsoc,
A o
note that {ek}k is bounded (otherwise r = 1 would be a better approximaticn

=1
= 5

than ry

N

on X for some K). Hence, there exists e® such that gy # e, The
remainder of this proof is broken into seven lemmas; the first of these, which
proves that the points in Yk cannot cluster is proved by arguments similar to

! Wendroff [6, p. 65].

LEMMA 1. There exists § > 0 such that for every k, if Yy = {xg, v, x§+1},
then x% < x5 =6 forid = 0, 1 n-1
{5 %54 Y s dy sy :

Proof: Suppose not, then there exist, for some fixed i, subsequences (relabz:lle?

as) {x?} and {x§+l} such that x? - xf and x§+l > xi. By passing to further
subsequences (relab=1ling if necessary) we have that x§ > x? for =0, s 0+l
as k » » where xz = xz+l and xj 5_x§+l, 3 =05y aeely 0 = L. This, on the
- % - : i - 1
set X% = (%%, ey x;+l) we can find p® €n such that f(x§) - Egrzgy =10y
* j=0,1, ..., n + 1. By continuity, there exists a § > 0 such that
i 1 e, n+l
B f(x) - =———=| < = for x X¥ - 8, #¥ + 8) N X where e, > 0, is
i | p"(x)I 2 6380‘ Jorion oy R 2 gjes
% the error of the second cycle. Hence for sufficiently large k, we have that
E‘ k ) e,> e’)
5; If(xj) - p*(£¥31 <553 =0, 1, «v.y n + 1. But this Implies that e < 5 since
;i = is best on Y, = {xk xk } which contradicts the fact that e *t. ]
.; Py N i ) - [VEERR R, T ) ¢ (e ’ v
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LEMMA 2. Let X be a compact set of real numbers containing at least m + n + 2

|
—— |
|
|

points, and let f € C(X). Suppose r# = %g EIRz(i) has defect d = min(m-3p%, n-3q%)
and let N=m +n + 2 - d. Suppose that f - r#* alternates in sign on {xi}?rl =%
where x) < X, < ... < Xy, and that f(xi) - r*(xi) ZR0L S fopa it =N SR IN SN T hen

if r = E-Q_Rz(i), r # r* on X we have |

max |[f(x.) - r(x.)| > min [f(x.) - r%(x.)|.
15;5Nl - 2 1<i<Nl = !

. nax | 3 o . = - r(x. i
Proof: Suppose lggZN.f(xi) r(xi)l < min [-(xi) r (Al)l Let

~1<i<N
A(x) = r(x) - r¥(x) = (£(x) - r#(x)) - (£(x) - r(x)), for all x € X. Assume
(without loss of generality) that f(xl) - r*(xl) > 03 then we have (-1)“a(x.) < 0,

i =1, «..5 No Now for-all x € X,

"o

. A(X) = p(X) J ".:(X) 2 p(x)c:’:(x) = P:’:(x)q(x) o S()\)
i q(x)  g*(x) q(x)q* (%) T oq(x)gH(x)

so that (—l)lS(xi) £0,1%1, wsepu N. But 85 sm+n-~asN-2s08:=0.

Therefore r = r* con X and this contradiction proves the lemma.

v

LEMMA 3. There 2xists a constant ¢ such that for every k, if pk(x)

k k k. n k .
= p0#+ Pi¥ t ... DX, then Ipil <£ec fori=0, 1, .0y N,

Proof: Suppose not. Let L =-Ek for all k where [lq, ||, = 1 and ¢_ > 0.
SN Py qk k't X K

Let I = [a, b] be a closed interval with a < min{x: x¢€ X} - & and

b > max{x: x &€ X} + 8§ where § is the § of Lemma 1. Note that G S 2 |L£]]

for all k. Now, if there exists n > 0 such that ¢, > n for all k then the i

k

desired result follows. Thus, let us assume that there exists a subsequence

(vhich we relabel) for which ¢, » 0, q » a'@_nn uniformly on I with ||qi] = 1.
Let Zys ees 2 be the distinct zeros of q in I, and choose non-intersectine
intervals T, = (7,l = 8y 2yt Gl), vy Ab (Zl - Sl, z, + él)

L
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with 0 < 61 < 5 et J = T = UIi and let 62 = min{!q(x)’: x € J} » 0, i
i=1
2

Choose k so large that lqk(x)l 1_7; for all x € J and Cy 5_%62m where
m = min{f(x): x € X}. By Lemma 1, no two points in Yk lie in the same Ii;

furthermore, for all x € J, we have

and suppose that

k k ,k “OT1S 3 31 a
Now let xj—l’ xj and kj+l be consecutive points of Yk

SR

K k
p (x._l) K
which is separ%ted from both xj_

1

e... Then x? must lie in some Ii (since ———17;- = f(xk) + e, >n)
p (%) "

and xk L

1 Jardl

k
f(xj_l

by points of J.

Since l at such separation points, if Py > 0 throughout

K

3
[x¥ p xk ], then p must have a relative minimum somewhere in (xk xk Y
79-17 T4 k j-17 Tj+1 ,
o ; k k h :
If, on thé other hand, pk(x) < 0 for some x € [xj—l’ xj+l] then, since ;

|
p, (%)
k pk(x

k . k
pk(xj—l) > 0 and pk(xj+l

; i Rl
somewhere in (Aj_l,xj+l).

) > 0, it again follows that Py has a relative minimuam

k k k . . .
Next, assume Xx. ¥%. and X, . are ccnsecutive points of Y, with e

5 el SR JEL k (xX
e
P -1
— K = s Ehb ———'—}—- = k + > 11 ine that k g
f(xj-l) e then I f(xj_l) e >m implying that Xj—l € I, for
Pit¥i-1

some i, and similarly for x?+l.

1
By Lemma 1, x< _ and xk are in distainect T.'s.
o= J+l i

: k k ol Gk & .
£ 0 throughout either [, X 2 g hen f som Al 4
I pk T throcughout either x]_ (J] or [x], X]+l]’ then for some point x in

l,

one of these intervals we have 0 < Eﬁ%;y < “_-LE_—— and 0 < %x)
" Py (%5 ) Py

: P Py k k 5
since there are points of J between x? , and xj and alsc between xj 2ol
=4




11
: - . : k K =0
Therefore, P, must have a relative maximum somcewhere in (xj 1° Xj+‘)' If, on
18 = 4
5 ; k K K k . .
the other hand, p, < O somewhere in both [x. ., %.] and [x%., %x.. .J, then since
< =l J g Jtl

k . $ s ¢ .
pk(xj) > 0 it again follows that Py has a relative maximum scmewhere in

k k

(x, L
-1 T+l
We have now shown that Py has a relative minimum between every pair of
3 = . .
"lower extrema" of £ - — (on Yk) and a relative maximum between every pair
K

S a

(o1

of "upper extrema'. Thus, has at least n relative extrema. But
PP Py R

non-trivial polynomial of degree < n. This contradiction completes the procf

of the lemma.

Corollary. There exists a constant c* > 0 such that [pk(x)l < c* for
k=1, 2, ... and all x € X.
Before proceeding to Lemma 4, we introduce some new notation and make a

few remarks. We shall call the exchange from Yk to ka an augmented exchange

1

i = E Y i s points on which f - r
if X, = Y U {y} (recall that « C X, is a set of n + 2 points on which

X

alternates with errcr ek). Also, in this case the point y € X satisfies

k }\
= 3 . = ¢ Writ+i = 1 ‘*‘ A hat
pk(y) mln{pk(x). % e X} < e Writing Xk+l {yc, “+es ¥ .o}, we have that

x T T s k , .
X contains exactly one g-pole of r.. Call this peoint y . As stated earlier,
k+1 = k : g
. 2 0 %
we let r denote the best approximation to f from R (X )} on X, (found via
k+1 n o k+l K+l

the differential correcticn algorithm) and we cefine Yk+l to be that subset of

X on which f - alternates in sign with modulus e Note that since

K+l Tkl kil
we are assuming that wc are using Exchange I, Yk+l is uniquely determined by
R . : ool ; : &
the fact that ¥ € {k+l and at precisely one point of Yk’ say t, If(t) - rk+1(1)! < €
must hold. This follows from Leima 2. For e, < X < e construct r, = éL
k =~ = kel 2y

by requiring that

sk, = ok A
f(yk) = Py ) = neky 4 =005 Ly Gecy B
1 AL 1
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where Xk+1 = {kfl ~ {yc} = {yo, e yn} and ng # ogn[f(yi) - rk+l(yi)],

Obs hat f = e e S R
serve that ror ni i ji = "i = yi an or ni = o

f(~k) A= F(~k) x> f(jk) = ( )> — > 0. Thus. D. is well
BgtaiG bom St = el DA e T y * s S Py e S EWE LS

C

defined by these equations and for all x € X, BA(X) is a continuous functicn of .
Finally, let A = inf{ ||[f - r|| : re Rg(x)}. Note that A > 0 since f < C(X)

0
Rn(X)' Then,

LEMMA 4. If at the k-th exchange an augmented exchange occurs and

~k ~k ~k
sgn[f(yi) - rk(yi)] sgn[f(yi) k+1(y N =0 N, then

sy - 5 2 9 [Le]]

el A), where Q is a constant independent of k,

Proof: First observe that if A = & s then ;e =1 as these two functiomns
X

take on the same values on Xk+l (n + 1 points) and likewise rek+l R IE
Thus, p. (yk) < g since yk is a g-pole of r, .

e G (0] K

K k k. =k

We now claim that if y, <y <y, then we must have that
1 (o] 1+1
~k e ik k S

sgn[f(yi) - ‘k+l(yi)] = agn[f(yi+l) - k+l )] il

since otherwise (i.2., = -1) a zero counting argument implies that r, = D11

g e F ~k ~ ~k ~ -k
’ o 2 £(x - ( =
Similarly, }f L < y0 of ¥ < Yo W must have sgn[‘(jo) rk+l‘y0)] 1 or

sgn[f(§§) - pk+1(§i)] = 1, respectively. This follows by counting zeros of

Pry1 = Py in the contrary case and using the fact that B )il Indeed,
suppose §k e - and sgn[f(ik) - (j )] = -1. Now we have that r alternates
15 o & n K+J k+1
Ot ¥y wney §k yk with error e and r, alternates on S ey B WEh error
0 gl A k+1 k Aok > I

e. an he i i as that f - p 1S, D - s zeros ir
K d the same sign as th of rk+1 Thus, pk+1 pk has n ro ¢}

% G < :
[yo, y ] Also, we must have rkrl(yi) > rk(yh) since we are assuming that

- . ~Ky - - nd \ \ o
Uﬁ[f(w ) rv1l(yi)J =-lande <e,. Thus, D, (j ) ¢ b (/ ). Also,

' o is the best approximation to £ on ¥ we must have p ly ) * &

kel ) e Sy = Tkl KEL =g =




NI

e i

b
t' ]
|
:

E

B

g

&

13

: k ¢
by censtruction, yo was chesen so that pk(yZ) < €. Thus, pk+l - pk has
(at least) one aiditional zero in (§-, yk) implying p, ., = p, which is a
n o = “ktl k

contradiction. A similar argument will treat the other cases. Thus, it

. k k
s fr e ernation of f - g - 3 = -
follows from the alternaticn of f 1 that sgn[f(;o) Pkfl(/alj 34

| A

N T T g SR
Consider px(yo) for e < A € 41 We know that pe‘(yo) = pk()o) < €.

S
Set m = min{f(x): x € X} and ¥ = max{f(x): x € X}. Since |([f]] > 24 > &

3
we have (as ¢ j_E-ﬁ?qI)

k -
P, (¥y)=p Ky = k -1
k+l o ekrl(yo) = (f(yo) + ek+l)

v

(75 + e, + el - a7}

+1

v

(FGE) + e + ClIEI - e 07

> - >eg >D (xk)
ey 5 B NC A

gt Tl N K | -1 k e -
Therefore, rk(jc) < (£lyy) * Sy * ClE) - ) < (yg). Since p, is a

Pl

continuous function of ), e < A< Cke1’ there exists w such that e, < w < e
a— S N

K+1
and
ke S i
PNy = By} + e+ CYER - 800
We define coefficlients Cj A for j =06, 1, ..., n by setting
n
= ok k3
p,(v;) = jZocj,)‘(yi)
and let M* = max{1l, |x|, ..., |x|}. Then,
xeX
el - a= (e, + €65+ ClEN - 8)) = (e, + £G5N)
RpI g = ) ST Yo
SN 1 Pey 41 (¥g) - B, 0)
B A R S e e e
p(y.) p v} PAY . Ky ]
e “ke1 °© AL~
) = .k = k
G 3 =By )]
-'62{pck+l(j0) )w‘fu -
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n
1 K]
sl ) e * Hyg ™)
2 450 ey v O
Mi(n + 1) max |c S r
= 2 0<i<n 1y jow
_M(n+l) i |
¢? L TYR L
We complete the proof of Lemma 4 by showing that ”f[l =A< Q'(ek+l - ek),

‘where Q' is a constant independent of k. Now let

e R S IR
k 5 .
D(y,) = det : 2 : 5
: = ~k. it
T yi (y:)2 K (yn)Y1

and let D(yg, A) be D(ys) with the j-th column replaced with

(EGD - a0 L, EGE - a0 ™

Also, let ﬁi be the cofactor of D(yg, A) relative to the (i, j) element. Th=n

using Cramer's rile

T <
lelf -8 2H2 2D L ippeX, e ) - 0oyl w1
€ Ipty)l
_ ME(n o+ 1) % % i 1 _ 1 ]l
2oy 10 T £G5S - ne £ - nyp
Yo i 1%k e i
M*(n + 1) § I | 1
€ mma i Wb omax We, -w).
) Ky . ; ~ K ~k +1
€ ID(yG;I i=0 sEele If(yl) - niek+1| If(yi) - niml i

2 ” S1e ) ¢ B
Now, since the points y; are separated (Lemma 1), there exists a constant § > 0

(independent of k) such that the Vandermonde determinant |D(y§)| > g > 0.

n
Furthermore, Z IW.I < K for some positive constant K since all cofactors c¢f
K i=0
D(y,) are boundel (independent of k). Finally,




15
~k - 1 . 1 il
leGp) - “i‘kul £ e ) " TS 2w
ek+l 1 ktl D
. ~k 1 1
by the corollary following Lemma 3. Furthermore, lf(yi) - niwl S e
x (y.)
and by construction this lies between f(yE) and - ——. 50 thatp“ ¥1
) ; Pe (y’i‘)
o _ 3 s = k+1
lf(yi) niu! > min(m, e*)'
< Thus,
Oméx K . T < e*max(e®, %0.
<1<n o O o =
S EE) - ngey g L EED - nje
Therefore, [[£]] - A < Q'(e - w). Taking @ = = yields
Voo = k&1 : = Q!
; , eC £l - » 2 T DS e s i

Now let us assume there exists a subsequence of positive integers

. :
{km}m=l satisfying the following:
1. An augmerted exchange occurs between Xy and Xk
\m m+ ]
2. e e aC l|l£]l - 2) (since ey 4+ e* < A, where A is the
m m

m
: . C 0
error of best appreximation to £ from Rn(X)).

By cur assumption 2, we see that the sign condition of Lemma 4 cannot hold,

« hence we have for each km, the additional condition:
¥ I
ke K Kn ., =Km Km : s
k£ ; £y, ) = ¢ (e ) sgnl £y, -r (y. for some 1, 0 < i < n.
i 3. sgn[f(y,") 4173 03 # senlf(y;T) e (g e i, 0 <i <
| §% 2 T l
F§, |
P % Recall that for an augmented exchange between X and Xk .1 that Yk 1 denotes ;
& m m m
ko 3 e : ;
| W the subset of X, 4y conmsisting of n ¢ 2 points on which & = Ty 41 alternates
| N m b m
‘ Kﬂl { km} km
with error e + Define y,. by (y, t =Y, =¥ . That is is the
k_+1 Jg DY g k k_+1 - 18y Jg
m m m
point of X _ which is deleted in forming Y . Since we are considering
km+¢ : km+l
L
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Exchange procedure I, we have that Wk may be taken to be Yk whenever an
m m
augmented exchange is performed. Under these assumptions we prove the

following two lemmas.

- k €
1M . e e e o 11 n ‘s
LEMMA 5. If pek(ys) < TEE then By = & > Q" where Q" is a constant
independent of k.
: ; i e PR |
Proof: Once again, define By # 5; > e <A :-?k+l by

. X 25 .
Py(y;) = (£(yg) - ngep) 7, 0 <i<n

4 ~k ~k 4 . 5
with n, = sgn[f(yi) - (yi)], 0 < i <n. Since we are no longer assuming

Tr+l

that sgn[f(??) - rk(ﬁg)] = sgn[f(ﬁ?) - (§§)J for all i, we do not necessarily

T4l
have that Bek Z Py However, we still have that ﬁek = Pl 4y 35 before so that
< +1
P (yk) >e > ——— holds. Since p (yk) < by hypothesis we have
€4y B~ (1 +¢) ey 7B (1 + &) :

by the Intermediate Value Theorem, that there exists w, ey < w < €141? such that

ﬁw(y:) = TI—E—ET . Then, as before %
+
= k - k
¢ A . 5B S 1 _ Peyy1(vg) - P, (vg)
. . TEe==, k, = Bl e - ;
: g PR Be Up) BB, ()
;f’ k+1 k+l
- n
1+ ¢ k<73
< . = .
where the coefficients c, and ¢. are as defined in the proof of Lemma 4.

k41 3

Since the estimates used in the proof of Lemma 4 are independent of the point

k X e k z ’ . .

¥ they may be applied here for Ygs and we have 1 < Qo(ok+l w) 5-Qo(ek+1 - ‘k)
e N L . an

implying e sl ey > Qo = Q" > 0.

gt ST, e AR A e




o ST

AR ARITRTDTY

LEMMA 6.

Proof: Assume the contrary.

necessary) we obtain a sequence {yk } of extreme points {XO%
L

that the exchangs from Y. +to X

k k
=Y, U {yol} where yoﬁis a g-pole for r

)

17

Then, by extracting

kz k£+l

and is
kl

pk(ygg = min{pkz(y): y € X} < g3 rkz is the best

is an augaented exchange, so that Xk

An augmented exchange can occur only a finite number of times.

subsequences (as often as
k ko

+
2 3
selected so that

approximation to f on

= {x € X: p, (x) > €} from RO(Z ) so that no multiple exchange is applied
2 g ny
. kg .  Kg :
to Ykz. Letting ¥ be defined as before, LyB }= Yk2 ~ Yk 41 we assume that the
final subsequence {Yk } for k = 1, 2, ... satisfies
L
(1) p. k'Q) e (Lemma 5)
pek Vg ' 2T+ ) )
L é
. |
=g kg, Ky, )
(2) sgn[f(yi ) = rk(y- )] # sgnlf(y.”™) - (Y )] for some i, 0 < i < n, |
gt 3 ﬁfl s ,
indepencdent of kl’ where Xk1+l = Ykg - {y ~{yO ety yn } (Lemma u4).
(3) 6, gk @ as &
=y as > ©
i L y
(4) ik 41" X* = {yg, Saks yg}c: X (coordinatewise convergence) with
L
y§+l - yg >8>0, 0<J<n (Lemma 1).
(5) S p¥ é.nn uniformly on X (Lemma 2).
L
7 L T . g
(6) sgn[f(yj ) - . (y;7)] is constant for fixed j, independent of kl'
As noted above, all of these conditions can be met by passing to subsequences of
subsequenzes sufficiently often. Now, under these conditions, we claim there
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exists a p > 0, independent of kz, such that

ke, - kg,
let, ) <2t M e %0 (2.1)
k L
£
where ry is deflnéd for ekz <A 5-ekz+l as before:
L kg .
r)‘(yj = f(yj D= njA, 0<3J<n

X Jeg -
with n. = sgn[f(y.a) -r (y.z)J. Indeed, if (2.1) is not true, then there
J . 3 kkL™]

exists a subsequence (relabelled) such that

k k
[’} - '3 it
If(yB =l (yB_),f_ek _ (2.2)
k 2 L
L
Define q € Hn by
S e ~kg =l e = ~kg) .
q(yﬁ)‘~ %52 (f(yj 3 - n3ey ) T = ii: pek (yj s 0 2§ < n. (2.3)
& A
k k
Note that if ns = -1, then f(ijﬁ) - ”jek > f(?iz) > min{f(x): x<X} =m> 0,
. ]
and if = 1, then f(”kz) — nee. > f(~k2) - e = (~k2) = 0
U > T .)’j Ly b Yj k #1 k @1 yj 2o > Y
£ A L
Thus, the above limit exists for each j and g(x) > 0 on X*. From this it

follows that ﬁek converges uniformly to q on X. Furthermore, q(yg) :_TI*%—ET
by (1) and by (2.3) [f(yg) -

13 k
say kz > k, so that q(ysz) > 0 we have

ofe

3?537[ = e®*. Thus, for k
]

1y sufficiently large,

) 1 . ky, (er s = kg,
¥ i3 - | < 34 b - - -
|f(y8) q(y¢)| & (v§) - flyg )|+ Elyg™) - v (ys )|
B kg

k 1 1

- 2 | d

+ IP (¥, ) - Keil I k = "-ﬁ—4 +> e* as k> =,
e B /X 2 qly) 2

ky alyg ) alyg ™) 8

. -k : kg
Now, since p, (y. ) > € for all j and k, and p, (y, ) > € for all k,, we have
ke 73 - 3 kf, B8 — L

that p*(y?) > ¢ for all j and p*(yg) > €. Furthermore, f - §%~alternutcs on

e She M e s dhd




T

»3

PO r ooty re

s

2
»

e ——————————

~

k
X% U {y%} with deviation e® since f - —l—-alternates on X U {y z}with
B szl B

P
1 5
deviation e - Thus, by Lemma 2, Y = 5;. But this is impossible since for
2
k2 sufficiently large (i the index of (2))
s B S O T
ERLINY{ . BRGT ) SRCELE ki
i L
kg kg kg £ ¥
= -sgn[f(y,”) - r (y. )] = -sgnl[f(y.”) - r (y.M)]
i k£+l i 2 e i
k2+l
= -sgn[f(y¥) - —_lT_] AR08
i aly¥)
!
which is our desired contradiction. Thus, (2.1) holds. Since e > e 4+ et |
kl+l kl
& = - P
we have that ek£+l ekz + 0. Choose k so that k£ > k implies ekz T % 7 Ckl+l'

Then, we have, using (2.1) and the determinant argument from the procof of Lemma 4,

. kg, ky L ke
S e 409 < lf(y ) -r (y B lf(y ) -1 (y,")
2 k Kitl — B e B8 8 e 8
L . k k,+1
L X . L

= L - %

p 1 il 7 \pek +l(y8 s P (yB )‘

= 1= K¢ ko |~ 2 2

pe (yB ) p ()’B ) KE' i <

k k,+1 (yg ) ° P (¥5 )
£ . - DL B

L L
1+ ¢ |- kg, o kg
=77 |Pe (YB e Pe (ya ) :-Ql(ek 1 - %k ).
k,+1 k 2 L
L L
/s - S e A 3
Thus, ek£+l ekl 1_92, 92 291. But this is impossible, so we have that an
augmented exchange can occur only a finite number of tiines. 4
We now turn our attention to the case that the exchange from Yk to Xk+l is

not an augmented exchange. In this case, Ty is not the best approximation to

0
R alent » " - =V =
f on Zk from Rn(Zk) and X v

{xk+l

1
K41 K1 G bt x"+l} with no g-pole of r, in

n+l 3 K
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; ; k+1 k+1 ., k#1 . k+1
. Sett = [e(x, 7) - and B, . = me -r, (3
X1 etting v, ., 0<?:g+l ! (xl ) rk(x )| and Ekfl 0<2:§+llf(xi ) r, (x; )
we observe that Yesr 2 % and ek+l > e
LEMMA 7. There exists a constant Q@ > 0 (independent of k) such that if kau is
not obtained by an augmented exchange then Brsi = Yoy 2 Q(Bk+l - ek+l)'
. - Nt
Proof: Let A be a parameter satisfying Vsl <A :-ek+l' Set n
= sgn[f(xk+l) - (xk+*)] and note that (-1)'n = sgn[f(x¥+l) -r (x¥+l)] for
0 k' "0 i jshelal
i=0,1, «eoo, n+ 1. In addition, it is always true that sgn[f(x§+l) - rk(x§+l)]

= sgn[f(x§+l) - rk*l(x¥+l)] This fact follows from a zero counting argument since
. b both f - - nate i
both ry and P4y are positive on K+l and both f Ty and f Pyl alternate in
signon ¥, . If (—l)ln = 1, then we have that f(x¥+l) - (-l)lnA = f(x¥+1) =
k+1 i i
er k]l ’ _ ookl ‘,. . i L v o
Z_;(xi ) - €re1 = P t®y ) > c¢®* > 0. On the other hand, if (-1)™'n = -1,
we have that f(x§+l) - (—l)nnk = f(x§+l) + A :_f(x§+L) >m = min{f(x): x e X} > 0.
In either case we have that
k+1 1 :
f(xi ) - (<1)nA >0 for 0 <i <n+1, L < k2 LR

: [
o = ¥ <
Define Py € Hn by pA(x§+l) = (f(x£+l) « {~1Y"nk) * for d = 0 Uy ey o A

i # q, where q is the smallest subscript, 0 < q < n + 1, for which

If(xk+l) - rk(xk+l Next, define r, = = and note that ;e = p
q q pA k+1

)| =8 \

k+1° k2

since these two functions agree at n + 1 points (i.e., X; e 1.2 05 Ly sy mely Sfa).

Finally, observe that 5A(x:+l) is a continuous function of A for Trag 22 2 €rel”

We shall prove that there exists an w, Tigy S8 < &

st & g tly |
4] such that pw(xq Y=

1 2 v 2 oY wr s s
pk(xk+‘) To do this we must consider two cases:
q




a4

,-...*':f'_.yr"M‘ )

WO e L i S R

Case 1: (-1)% = T, daens sgn[f(xz ) -

21

+1 k

k+l q

\ k+1 k+l :
i 4 = T - = . e
f(xq ) rk(hq ) Bk+l and (xq ) rk+l(xq ) &y For i # q, we

k+
|f(x - rk(xi l)l, so that

)] = 1. Here

- k
have If(x§+l) -r (xi+l

Y
k+1
i k+ = k+ i k+
(-1)ln[z~k(xi l) ) (xi l)] < 0, and thus (-l)ln[pk(x. Ly« P (%
Y41 k+1

X Toin 3

i #q. Now, if (-l)qn[pk(xk+l) ='p ( )> 0 holds, then by counting zeros
4 Tker 4
(including multiplicities of up to order 2) one has that Py = ) , so that
k+1

+ - . ;
i k+l) and one sets w = vy, .4 in this case. If, on the other

pk(xq ) = ka+l(x

hand (-1)%n[p (xk l -p k+l)] < 0 holds, then p (x
k

Y}<+1 Yk+l
k+1

) = B > e = f(xq ) = k+l(xq ) we also have

k+1) N pk(xk+l)-

k+1

Since f(xq k+l

) -

k+1 - +
that pk(xq ) > pk+l(x§+l) =D (XZ l) so that by the Intermediate Value

k+1 ( k+1

Theorem there is an w, Yy <w<e )= Py xq )is

s such that p (x

Case 2: (-1)n = -1. This case follows with essentially the same argument

and we shall not give the details

A e J Jedie JKtd
Thus, there exists an w, Vi 29 < € i1 such that p (y e pk(xq )1
Hence
k+l, - k+1 k+1 1 1
B f(? )-r )- [f( (x_ )= -
K+l k+l w q ek+l q 5 xk+l) 5 (xk+l)
ktl o i
n
1 k+1.j
= Y fex = o, e ")
B (xk+l)p (xk+l) 320 Jsw Iy gy q

e ®Re1 9

Since 5w(x:+l) - pk(X:+l) > €, and referring to the already established

estimates of Lemma 4, we have

ot n 1
8 - e < m——r—== ¥ lwi[[max(c", 5)](“k+l - w)
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' - '
in(9k+ w)f_Q(ek+ s

1 17 Ykl

S . 1 )
where Q' > 0 is independent of k. Setting Q = Q7 e have our desired result. {

Finally, collecting all the above results to complete the proof of Thecrem 2,
we see that first of all there exists a positive integer ko such that for k i_ko

men da 1ge ur. "hus > K 3 3 =
no augmented exchanges occur. Thus, for all k __PO we have that LT

el ~ Fier) T PEB = Mogg) - Bley 2 Mg

Q o . 7
[m](8k+l - Yk'}‘l) implying that

> QB ), by Lemma 7. Hence, for

k >k

2% %1 Y 2 Yier2 ~ kel

Q
< [(1 +WJ(B}<+1 = Yee1)e

Now we may apply the argument given in the continuous case ([2], p. 2%9),
noting that we have a Strong Uniquenss Theorem ([5, Theorem 3]), to show thait

there exists 6 € (0, 1) and A > 0 such that if k > kO then

£ - mll < o

completes the proof of Theorem 2.

T e T




3. Approximation from R (X)

We now turn to the second objective of this paper. Here our approximating

family is taken to be

m |
R (X) = {r=%= pel>ael,q>0onxl}

and require card(X) >m+n+ 2 (m >0, n>0). g-poles are defined as berore,
i.e., X € X is said to be a g-pole of r = %-if q(x) < € where g > 0.
This concept is useful even when X is finite, .
since it enables us to avoid division by very small positive numbers. We

_ =18 Y - ; - e :
have used ¢ = 10 on a UNIVAC 1106, which has roughly 18-digit accuracy in
double precision. Unfortunately, we can no longer be sure that Ty will be g-pole
free on its reference set, although this conditicn can be enforced by inser‘ing

al

(=5

additional constraints into the linear programming part of the different
correction algorithm (we will return to this point later). The elgcrithm we

b}

used (with card(X) = NUMGR < =) is described by the flowcharts 1 and 2.

g
i
5
i




4. Convergencs

i In this section we prove that if the 20-step stopping criterion is

deleted frcm the Remes-Difcor flow chart, then under certain existence

assumptions the algorithm will terminate at a hest approximation to £ from

m
R (X).

THEOREM 2. Let X be a finite set of real numbers containing at least

m+ n + 3 points, and let £ € C(X). Suppose that for each subset YC X

containing exactly m+ n+ 2 orm + n + 3 poincs, a best approximation
_E_ mv : £ £ mV and * Al +4 -

r=<¢ Rn(.) exists for f from Rn(.) and, in addition, that q > € on Y.

q

) Then the Remes-Difcor algorithm will terminate at & best approximation r® tc

f on X from RE(X).
Proof: Let XO be the initial reference set and let Xk be the reference set
g at the k-th stage. Let r, be the best approxination to f on X, with

e = max{ [f(x) - vk(x)i: x € X }. If the algorithm terminates at stage X,

then there are no g-poles and the maximum error occurs in Xk; thus,

€ = ”f - rkll and ) is the best approximation to £ on X from R:(X).

el Now suppose the algorithm does not terminate at the k-th stage (k > 1).
If LY has g-poles in X, then at least one of these is included in Xk by

r construction, so that Ty £ LS Also, 1f L has no g-poles in X, then

i Ty £ L) since otherwise the maximum error for Ty in X would occur at some

=

point as the maximum error for r and thus would be included in X his

i

k-1’

would contradict the fact that the algorithm dces not terminate at the k-th stage.

L

- mue 3 some set {: X
Now f v M t alternate on some zet {xl, 2 s xm+n+2—dk l} C'Xk-l
where dk-l is the defect of £y and so by construction f - r,_, must alteraate

in sign on some set {x!, Kis weey %

v
1

}C x, with [£(x!) - »_  (x})
k-1 ) :

1 '
m k Kl i

+n+2-4d

v
E
#




O SRR R IR T U e | . So by Lemma 2 we have e = max[f(x) - rk(m)f

k-1 < xe Xy
> max|f(x!) - r (x!)l > min|f(x!) - r (x!i[ > e . Therefore, {e,} is strictly
-3 k71 5 1 k=) ns = el k
increasi: o since there are only a finite number of possible reference sets
containe. X the algorithm must terminate. |

e BT o ol W A, RN Al A i iR




5. Examples and Conclusior
In order to get a time comparison of the Remes-Difcor algorithm with the
ordinary differential correction algorithm alone, we ran the following digital
filter design problem:
il 0 <x <0.2m
Let X = LO 0.2n] ) Lo tm, wl, £(x)
0.0123, Obm < x <7
, et n(x) h
- We approximate f (X) { (a, + a,cos x + ... + a,cos 9%)/(b, + b_cos
q(x) 0 1 9 0 ]
+ b,cos 2x) : q > 0 on X}. We also want @ > 0 on [0, 7] and P>oon [0, w}
2 > q — s s
but in this example it is not necessary to do anything extra to force this.
Although we are not using ordinzry algebraic rational functions, we do have
{ the alternating theory in this situation, and that is all that ics required.
: To run this example we replaced X with an equally-spaced mesh (spacing —--0
.)~)
containing 206 points. Using as our initial reference set five (roughly)
S equally spaced points in [0, 0.27] and eight (roughly) equally spaced peints

in [0.4w, n], we obtained convergence after

’

he time diflerence to increase

would expect

T

K

We also ran the Remes-Difcor

‘%ﬁfﬂ*&:.

P,

program on an

four exchanges and 60.0

if a finer mesh were used.

example for which best aj

did not exist on scme reference sets, although a best approximaticn did ex
on X. Here convergence depended on the choice of initial reference set,

|f - r*!| was 1.83914 x 16 (where r* is best). (Note: the final alternating
set does have five points in [0, 0.27] and eight points in [0.uwn, ©], but they
4 are not equally spaced.) Starting with eight equally spaced points in [0, C.27]
3 and five in [0. bm, wl, eight exchanges and 1 minute 11.7 seconds were requirgd;
f starting with all reference points pushed to the extreme right of [0.4w, w]
s (which is one of the worst possible starting reference sets), fifteen exchanges
?3 and 2 minutes 0.5 seconds were required. On the other hand, running this
¥
¥ problem with differential correction alone required 5 minutes 45.5 seconds. One

X

proximations




(o ¢ v A A

s, P
R

27

although we were able to obtain convergence even with a bad initial reference
set if we "helped the program over the bad spots" by forcing q > € on the
reference set; this (as opposed to forcing q > € on all of X) did not requir«
much additional work.

In general, the relative merits of Remes, Remes-difcor, and difcor for

finite X can be summarized as follows. When Romes works, sc does Remes-d

and with comparable speed. Remes-difcor will usually still work when Remes
b { -

fails due to problems in finding a new approximation on a reference set, and

is much faster than difcor if card(X) is large. Difcor is theoretically

more robust than Remes-difcor since it does not require an alternating theocry,

and ”f - rkll will converge to inf “f - r[| even if there is no best
i

approximation, but round-off and storage problems may be prohibitive if

card(X) is too lerge.

oo om0 A0 9%4 00 VR - gl
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Remes-Difcor Flowchart #1 (excluding input-output). For a fixed number
(NUMGR) of grid points.
Pick initial reference

compute errors, den

maximum error on entire gri

are there any g—pzlefj)

[ Have 20 exchanges) / Does maximun error
\ been performed ? ,L511~ cccur in the
0 referen

0
I
(7]
]
+
~

no yes

nd a new give up
ference set We have the solution

( X T
flowchart) /’/////’
Csior )

o
H

o ¢ Lagud it

, S

b 2 L

i P e TRy A RN R " - v ’ T oo w—; ]
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Flowchart #2. TFinding a New Reference Set (N = n + m + 2, NUMGR = number of

grid points)

(START)

Reduce the old reference set T to a maximal suboct T
on which the error function alternates in s

X £ {:%oes Tl have fawer than 2 points?
Shift all points of no
o}

i
T 10 spaces right G =
modulo NUMGR Ll Does T, have N + 1 points?

\

il
i ves
\ 4
Return
$ (with reference set T) Drop one point of T,, preserving a
maximal number of alternations
. (sign and absolute value)
\ —————
" Let T = tl’ Do tM 5 to = left-most grid point, tH+l = right-most grid po vt.i
for i = 1, ..., M replace (recursively) t. by the grid point between t. 4 ‘
3 [ S 8
and ti+l at which the error has maximum absolution value and the same sign
E as t;, considering only points which are not g-poles
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